A v-analogue of Peel's theorem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fractional Analogue of Brooks' Theorem

Let ∆(G) be the maximum degree of a graph G. Brooks’ theorem states that the only connected graphs with chromatic number χ(G) = ∆(G) + 1 are complete graphs and odd cycles. We prove a fractional analogue of Brooks’ theorem in this paper. Namely, we classify all connected graphs G such that the fractional chromatic number χf (G) is at least ∆(G). These graphs are complete graphs, odd cycles, C 2...

متن کامل

A Bipartite Analogue of Dilworth's Theorem

Let m(n) be the maximum integer such that every partially ordered set P with n elements contains two disjoint subsets A and B, each with cardinality m(n), such that either every element of A is greater than every element of B or every element of A is incomparable with every element of B. We prove that m(n) = Θ( n logn). Moreover, for fixed ǫ ∈ (0, 1) and n sufficiently large, we construct a par...

متن کامل

A Complex Analogue of Toda’s Theorem

Toda [28] proved in 1989 that the (discrete) polynomial time hierarchy, PH, is contained in the class P#P, namely the class of languages that can be decided by a Turing machine in polynomial time given access to an oracle with the power to compute a function in the counting complexity class #P. This result, which illustrates the power of counting is considered to be a seminal result in computat...

متن کامل

A complex analogue of Toda's Theorem

Toda [19] proved in 1989 that the (discrete) polynomial time hierarchy, PH, is contained in the class P#P, namely the class of languages that can be decided by a Turing machine in polynomial time given access to an oracle with the power to compute a function in the counting complexity class #P. This result which illustrates the power of counting is considered to be a seminal result in computati...

متن کامل

A Thinning Analogue of de Finetti’s Theorem

We consider a notion of thinning for triangular arrays of random variables (X (n) k : n ∈ N+, 1 ≤ k ≤ n), taking values in a compact metric space X. This is the sequence of transitions T n+1 n : M1 (Xn+1) → M1 (Xn) for each n ∈ N+, where T n+1 n μn+1 is the law of the random subsequence (X (n+1) i1 , . . . ,X (n+1) in ), where 1 ≤ i1 < · · · < in ≤ n+ 1 is chosen uniformly, at random. We classi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2004

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2004.04.017